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Appendix: Predictive Microbiology1
2

A. Overview3
4

The purpose of this appendix is to present the evidence for predicting growth and decline5
of E. coli O157:H7 in ground beef to encourage deliberation about the merit of the data6
and approaches for use in risk assessment. Full analytical details for some sections of the7
discussion herein are presented in a published risk assessment (Marks 1998). In addition,8
input was also obtained from the Interagency Food Risk Assessment Group (IFRAG9
participants, particularly Dick Whiting (HHS, Food & Drug Administration) and Tom10
Oscar (USDA, Agricultural Research Service) and Paul Uhler (USDA, Food Safety &11
Inspection Service).12

13
Modeling growth and decline under changing conditions of temperature during animal14
production and meat processing, storage, distribution, and preparation is not a simple15
process. The effect of changing temperature on the lag time has been researched for a few16
bacteria. Zwietering (1994) reports that shifts in temperature can cause an increase in the17
lag time, which could vary by organism.18

19
The particular conditions for modeling growth may merit consideration of different20
approaches in this risk assessment. For example, one might model growth of the21
pathogen in a 2,000-pound combo bin differently than in a quarter-pound serving of22
hamburger. An issue for the combo bin is that if contamination or temperature abuse23
occurs, many servings may be contaminated during subsequent mixing and grinding24
operations. The distribution of the pathogen in ground beef may not be homogeneous, but25
the effect of clustering might be more crucial to model for contamination and temperature26
abuse for a serving of hamburger than a combo bin. An opposing view might be that27
growth in a combo bin could contaminate more servings and result in more cases of28
illness. In order to provide transparency into the risk assessment process, deliberation of29
such issues before model development is desirable.30

31

B. Predictive Microbiology32
33

The term Predictive Microbiology describes the scientific discipline of predicting34
microbiological growth or decline as a function of environmental factors (McMeekin35
1993). Growth is characterized by properties such as the "lag" time, (the amount of time,36
from an initial equilibrium state, after an environmental change such as temperature37
before growth begins), and generation time (an approximation of the amount of time38
required for a population to double in size). Decline is characterized by a quantity called39
the "D-value", which is a measure of the amount of time to achieve a 1 common40
logarithm decline of the population at a given temperature. The common logarithm of the41
D-values themselves are often linearly related to temperature (Line 1991). The negative42
of the inverse of the slope of the regression of the log- D-values to temperature is defined43
as the "z-value."44

45
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Experiments to measure the kinetics of microbial growth have traditionally been1
conducted in rich broth culture media at high initial densities (103 -105 CFU per mL;2
Oscar, personal communication). Such E. coli O157:H7 data were the basis for modeling3
growth in the two published risk assessments; Cassin (1998) utilized a commercial4
software application, the UK Food MicroModel (FMM), and Marks (1998) used portions5
of the raw data most pertinent to ground beef from extensive experimental work at the6
USDA Agricultural Research Service (Whiting, personal communication). The full7
polynomial model, ARS Pathogen Modeling Program (PMP), includes a large number of8
observations of growth kinetics at a variety of temperature, pH, salt and nitrite conditions9
in pure culture broths from as many as 300 growth curves. The intent of such10
experimental work is to broadly represent growth in many conditions that might be11
typical of a host of food matrices.12

13
Some validation of E. coli O157:H7 growth kinetics was conducted in many food14
matrices according to the UK F MM manual. At the writing of this draft, little of the data15
supporting this model appears to be publicly available. In addition, Walls (1996a) also16
performed validation studies, one comparing bacterial kinetics in food with predictions of17
both the ARS PMP and UK FMM. Both programs predicted longer lag phases (0.5-13018
hours and <47 hours) for Staphylococcus aureus than actually observed in the food19
matrix. Both models also underestimated growth rate. Similar results were also reported20
in non-sterile food matrices (Smittle 1994). In addition, Walls (1996b) inoculated ground21
beef with E. coli O157:H7 (~104/g) and compared results to the predictions of the ARS22
PMP. Differences between the models were noted. Lag periods were shortened for23
inoculated ground beef at pH 5.7 and 6.3 and at temperatures of 12 and 20 °C (reductions24
from 31 hours in broth to 16 hours in beef, 27 to 3 hours, 8 to 2 hours, and 8 to 1 hour).25
These differences might be significant to consider in risk assessment.26

27
Further concerns about the available data include the very high level of inoculum for both28
broth and validation studies. At present, most predictive microbiology models predict29
growth independent of the initial density of pathogens per gram or per unit surface area.30
Many other models, including those of Monod and Baranyi, have a specific term for31
initial inoculum (Buchanan 1997; Alavi 1996; Marks, in preparation. Bacterial growth32
kinetics may be independent of initial density in pure culture systems with rich media and33
relatively high initial densities (>102), but may not hold true for low densities of E. coli34
O157:H7 detected in ground beef (Oscar, personal communication).35

36
C. Microbial Ecology of Ground Beef37

38
Some data are available on the microbial ecology of ground beef. Raw meats are a good39
substrate for growth of some bacteria. The specific microbial associations that dominate40
meats include lactic acid bacteria and Brochothrix thermosphacta under anaerobic41
conditions and Pseudomonas, Acinetobacter, and Moraxella under aerobic conditions42
from classical work in food microbiology (ICMSF 1980; Jackson 1997). Ecologically43
speaking, these bacteria appear to have evolved as the most effective microbial44
competitors in raw meat and poultry products.45
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Aerobic plate counts (APCs) are generally considered an indicator of the level of the1
spoilage flora (NRC 1985). The similarity in composition of the microflora of meat has2
long been recognized to mirror that of animal hides. However, additional sources of the3
microflora of meat may include fecal material, soil, hooves, hair, ingesta or4
gastrointestinal contents, and contacts in the slaughter environment from equipment5
surfaces, aerosols, and handling (Jackson 1997). The microflora of meat can be6
considered an inherent defect of animal production and processing perhaps best7
controlled by HACCP systems (NRC 1985). However, even under the best of production8
and slaughter conditions, raw meats cannot be expected to be sterile without further9
processing, such as thorough cooking. The National Research Council (1985) considered10
APCs an indicator of meat quality or shelf life, not safety. APC counts in foods are11
correlated with shelf life or time to spoilage, not to foodborne disease (Miskimin 1976;12
USDA 1993).13

14
Data from USDA (1996) and other studies (ICMSF 1980, 1996; Goepfert 1975) depict an15
extensive microflora associated with raw ground beef. A summary of the FSIS data for16
raw ground beef is tabulated below (USDA 1996). Note that every sample of 563 tested17
was positive for APC at a 95% upper limit of <13,300. None of the 563 samples analyzed18
in this study were positive for E. coli O157:H7. Data from MPN enumeration is available19
from the 1993 outbreak in the western states (USDA 1993; Johnson 1995). Of six20
samples analyzed, most probable numbers per gram for 25-gram samples of raw ground21
beef, unadjusted for recovery from frozen product, were 0.3 – 15 MPN/g. Competition22
from other microorganisms in foods is not considered in most predictive microbiology23
models. The growth of a pathogen is dependent not only on its initial population density24
in ground beef, but also the density of competing flora (Goepfert 1975; Coleman 1996).25
Smittle (1994) reported that the indigenous flora on foods is important to consider in26
describing the kinetics of growth of pathogens. Data or comments on the roles for27
predictive microbiology and microbial ecology in risk assessment are invited.28

29

Table A.1: Results of baseline study in ground beef (USDA 1996)
Microorganism Number of samples positive

by quantitative methods of
563 samples tested

95% Confidence Interval

Direct enumeration (CFU/g)
Aerobic Plate Count @ 35 C 563 4,700; 13,300
Total coliforms 563 60; 154
Escherichia coli Biotype I 563 31; 95
Clostridium perfringens 563 42; 107
Staphylococcus aureus 563 23; 41
Most Probable Number enumeration (MPN/g)
Listeria monocytogenes 99 0.42; 19.7
Salmonella spp. 29 0.001; 2.84
Campylobacter jejuni/coli 0 NA
Escherichia coli O157:H7 0 NA

30
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D. Modeling Growth Directly1
2

Many empirical model forms have been compared for predicting growth as a function of3
time for a given temperature. The available models are simplifications of the complexity4
of modeling growth of bacterial populations. Hauschild (1993) and Zwietering (1990)5
report that the Gompertz equation provides a better fit than other sigmoidal model forms,6
such as the logistic. In addition, Buchanan (1997) describes another alternative, simple7
linear three-phase models. However, the Gompertz equation has been very widely used8
for fitting and predicting the expected growth for many organisms (Buchanan 1990). The9
Gompertz equation appears to provide a reasonable, but imperfect model for predicting10
growth of E. coli O157:H7 as discussed below.11

12
Despite its properties of good empirical fit to bacterial growth data and common usage,13
the Gompertz equation is not derived from mechanistic microbiological considerations.14
The lack of a biological basis for parameters makes interpretation of the equation15
parameters difficult (Marks 1998). For example, the lag time, l, is interpreted as the time16
component of the point of intersection of the two lines: Y = L(0) and the tangent line17
containing the point (M, L(M). Biologically, lag time calculated by the Gompertz18
equation is a misnomer, because growth can occur before the predicted lag time (Marks19
1998).20

21
Further, the solution for the Gompertz equation used to calculate the maximum22
population density (MPD) is based on the assumption that the sum of A (asymptotic23
minimum growth parameter) and C (asymptotic difference in cell numbers) can be treated24
as a constant (Buchanan 1990). This assumption is not innocuous. It implies that at the25
initial time point, the organism is early in the lag phase of growth where the Gompertz26
curve is flat. In practice, this assumption may cause bias in predictions of longer lags than27
may occur with varying initial densities of inoccula.28

29
Several weaknesses of the available models are of concern to risk assessors. Some30
evidence indicates that predicted lag times from response surface models may vary from31
predictions in broth when the pathogen is inoculated directly into food matrices (Walls32
1996a,b; Smittle 1994). In addition, for practical reasons, the experimental systems for33
generating data to both construct the predictive microbiological models and to validate34
the derived models use very high initial innoculum densities. A great concern for risk35
assessors is predicting growth under changing temperature conditions. At least two36
published studies (Zwietering 1994; Rajkowski 1995) appear to offer conflicting37
interpretations of the effect of temperature changes on lag time for bacterial pathogens.38
Some adjustment to point estimates reported for lag time predictions will be needed to39
account for variability and uncertainty in risk assessment modeling.40

41
Therefore, the ARS includes a disclaimer for the PMP that states that their application of42
the Gompertz equation was designed as a research and instructional tool for estimating43
the effects of multiple variables on the growth or survival of foodborne pathogens in44
culture media. The lag times predicted from general polynomial models based on45
response surfaces for a broad array of experimental conditions possible for all foods may46
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thus not be appropriate for use in a risk assessment to predict growth in a particular food1
commodity. Full discussion of the Gompertz model and its parameters is available in2
various publications (McMeekin 1993; Marks 1998). The equations used in the Marks3
analysis (1998) are listed in Table A.2.4

5
Uncertainty is associated with the effects of suddenly changing temperature on microbial6
growth. The lag times for each period could be assumed 100% of the lag time that would7
be calculated from the above formula. The assumptions used in predictive microbiology8
applications may have great impact on growth predictions for risk assessment since9
growth kinetics are not routinely characterized for bacterial populations at the low10
densities observed for E. coli O157:H7 in outbreak investigations (USDA 1993; Johnson11
1993).12

13
Agricultural Research Service data (Whiting, personal communication) were generated14
for E. coli O157:H7 growth in broth culture relating temperature, pH, and salt and nitrite15
concentration to the generation and lag times, which were derived using Equation 2 and16
assuming that A = log10(N0). A subset of these data that reflect attributes of hamburger17
was analyzed by Marks (1998) for conditions of no added nitrite, 0.5% added salt (the18
lowest value tested), and pH 5.5-6.5. The experimental data included temperatures from19
50 to 99° F (10 to 37° C). Some of the details of the analysis (Marks 1998) are further20
described below.21

22
Since the Gompertz equations model microbial growth kinetics at constant temperature,23
the square root transformations of the growth characteristics, generation time, g, and lag24
period, l is commonly used to model temperature dependencies. Equations using the25
square root transformation are called Ratkowsky equations (McMeekin 1993). With the26
data subset provided (Whiting, personal communication), however, other transformations27
of the data provided more linear fits with temperature than that using the square root28
transformations (Marks 1998). Specifically, data analysis was used to find parsimonious29
(linear) models that describe the generation time and lag time Stepwise regressions of the30
natural logarithms of the parameters g and l were performed to identify linear31
relationships, using as independent variables various positive and negative powers of32
temperature, T, ln(T) and ln(ln(T)). For l, ln(T) was the first and only variable selected.33
For g, ln(ln(T)) raised to the 2.5 power was the first and only variable selected. For the34
latter dependent variable, a stepwise regression was repeated using only the ln(T) and35
ln(ln(T)) variables. Using the log-log of temperature as the independent variable implies36
that at 1° C (34° F) the generation time, g, is not defined. The residuals from regression37
equations using the log transformed values of g and l as dependent variables appeared to38
be homogeneous over the range of temperatures considered, thus simplifying models for39
use in subsequent Monte Carlo simulations (Marks 1998).40

41
In addition to determining lag and generation times as simple functions of temperature,42
MPD values (theoretical maximum population density, assumed approximately equal to43
A+C) were also calculated and were found to be linearly related with temperature44
(Equation 3 in Table A.2; Marks 1998). Estimates of the parameters and the covariance45
error matrix of the estimates were determined from linear regression of seemingly46
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unrelated regressions (SUR) using the SAS® routine PROC MOD. The estimates are: a =1
7.03, b = -6.31, c = 9.98, d = -2.69, e =10.08 and f =-0.014 (Marks 1998). Figure 12
depicts, for example, the expected lag time at 22° C (72° F) is approximately 5.3 hours3
and the expected value of the generation time is approximately 55 minutes. At 37° C (99°4
F), the expected values predicted by Equation 3 are approximately 1.3 hours for the lag5
time and 21 minutes for the generation time.6

7
Fig. 1: Some Predictions for Gompertz Parameters for E. coli O157:H7 Growth in Broth8

9
To account for the uncertainty of the estimated parameters for each simulation trial (Marks10
1998), values of a, b, c, d, e and f were randomly determined by generating 6 independent11
normal random variables with variances equal to the eigenvalues of the covariance matrix,12
and transforming these by the transpose of the matrix of eigenvectors (Anderson 1958).13
Computations of the vector of eigenvalues, M, and the matrix of eigenvectors, E, were14
made on SAS® routine PROC IML. Independent normal variables, U, were generated with15
variance matrix with diagonal entries equal to the values of M. The simulated parameter16
values were then computed from the transformation EU. These computations can be used17
to transform the deterministic predictions illustrated above to stochastic equations that18
account for uncertainty of the parameter estimates in Monte Carlo analysis.19

20
There is additional uncertainty in the estimated growth because the available Agricultural21
Research Service data (Whiting, personal communication) were based on experiments22
conducted in broth, but not validated in hamburger. Also, the variability in growth is23
understated because the data were generated from a cocktail of strains, which does not24
permit explicit estimation of strain variability (Whiting, personal communication). The25
standard deviations of the residuals of the regression models defined in Equation 3 were:26
0.16 for the natural log of the generation time; 0.27 for the log of the lag time; and 0.1527
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for the maximum population density. The source of variability in these error values is1
unknown. In an attempt to account for unknown differences in variability, the growth2
characteristic estimates could be adjusted by randomly generated normal variables with3
mean equal zero and standard deviation equal to the standard deviation of the residuals4
(Marks 1998). The correlation of these residuals could be taken into account in a similar5
manner as described above.6

7

E. Modeling Growth using Two Predictive Microbiology Modeling Programs8
9

The UK Ministry of Agriculture, Fisheries, and Food (MAFF) and the USDA10
Agricultural Research Service have prepared user-friendly deterministic models to11
predict growth of certain pathogens under specific conditions. Both models include12
growth of E. coli O157:H7. The models permit input of the following variables:13
temperature, pH, salt content, nitrite content, aerobic or anaerobic growth, and initial14
population density. The outputs of the model are the expected value and the minimum15
and maximum observations for lag phase duration and generation time. (In addition, a16
level of concern may be input, and time to level of concern may be output for the ARS17
Pathogen Modeling Program.) The model fits the four Gompertz parameters described18
above to describe growth at constant temperature. It appears that both the ARS PMP and19
MAFF models simply back-calculate from the estimated Gompertz parameters for a20
given temperature rather than explicitly fitting the data to the Ratkowsky equations as21
performed by Marks (1998). Neither the PMP nor the MAFF models appear to22
incorporate growth under changing conditions of temperature which is of interest to23
microbial risk assessors.24

25
Figure 2 below was generated using the ARS Pathogen Modeling Program for E. coli26
O157:H7 specifically to generate dialogue on some difficult technical issues. The specific27
conditions of the experimental system expected to be most relevant to ground28

29
Fig. 2: Specific Predictions for E. coli O157:H7 Growth in Broth (derived from PMP)30
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beef were used as inputs: 22 C, 6.5 pH, 0.5% salt, and 0 nitrite. The initial population1
density selected was 0.01 CFU/mL or 1 CFU/100 mL growing under anaerobic2
conditions.3

4
Table 3 below was another output of the PMP for the conditions input for the figure5
above. Note that the population could increase by less than one log before the lag phase6
duration was reached. Even though the PMP permitted generation of these results, the7
shape of the curve is open to interpretation for a number of reasons. The expected value8
for lag phase duration in the tabulated output was 3.6 hours (2.9, 4.5) and the expected9
generation time was 0.8 hours (0.7, 0.9). This lag period is not very apparent on the10
figure. The value of the parameter C, the difference between the densities at time plus11
and minus infinity, may be inappropriately large (Dick Whiting, personal12
communication). If this parameter value is unrealistic or implausible, the remaining13
Gompertz parameters (the constant B and M, the time for which the relative growth is14
maximal, the asymptotic difference between the densities at maximal density) are15
inappropriately defined. The parameters estimated from a subset of these ARS data16
(Marks 1998) were similar to PMP results tabulated below, but variability and17
uncertainty can be explicitly calculated from the analysis of Marks (1998). Thus, risk18
assessors using predictive microbiological data and models must be aware of the potential19
limitations of the experimental data.20

21

Table 3: Inputs and Outputs for Figure 1 using ARS Predictive Microbiology Program
Inputs Outputs (expected value and range)
Aerobic Anaerobic pH 5.5 pH 6.5 Lag phase duration Generation time

X X 3.6  (2.9, 4.5) 0.8  (0.7, 0.9)
X X 4.8  (4.1, 5.6) 0.8  (0.7, 0.9)

X X 5.7  (4.7, 7.1) 1.0  (0.9, 1.2)
X X 6.0  (5, 7.2) 1.1  (1, 1.2)

22

F. Modeling Decline With Cooking23
24

Rates of decline of E. coli O157:H7 depend, in a complex way, upon previous storage25
and holding temperatures and fat content of foods (Jackson 1996). In addition, Line26
(1991) reports that rate of decline decreases with the percentage of fat, that is, fat content27
of food vehicles appears to be protective of pathogens subjected to cooking temperatures.28
The interaction of changing conditions creates a complex system wherein growth and29
decline may not be not linear functions of time, and may depend upon the rate of30
temperature increase or decrease. In addition, models that can incorporate thickness of31
hamburgers are needed to model preparation of hamburgers at home. Thicker hamburgers32
are expected to pose greater probability of survival of pathogens if not cooked33
thoroughly. To develop a model that accounts for these complexities, the thermal heat34
transfer equations would be needed to determine the temperature changes during35
preparation, storage, and cooking of hamburgers (Alavi 1996; Singh 1996).36

37
A number of thermal death studies were conducted in which decline of the pathogen in38
small portions of inoculated ground beef ground beef was measured over time in thermal39
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death tubes incubated in water baths at different temperatures (Ahmed 1995; Line 1991;1
Doyle 1984). Results of such studies are subject to regression analyses to estimate2
parameters D, the time for a 1-log10 decrease in the pathogen level at a defined3
temperature, and z, the change in the log10 D with temperature. In addition, non-linear4
models may be considered for estimating parameters from these data since the5
assumption of linearity may be violated. Thermal death tube studies may be most relevant6
to modeling decline of the pathogen in ground beef dishes other than hamburger.7

8
Direct measurements of decline in the number of organisms in hamburger were made by9
two groups of researchers (Juneja 1997; Jackson 1996). The Juneja (1997) study results10
illustrated in the figure below (Marks, unpublished results) were selected for modeling11
decline in hamburgers (Marks 1998) because various sources of experimental variability12
were better controlled. However, the data source and modeling approach may not be13
amenable to modeling decline for other ground beef commodities or for hamburgers that14
vary from these experimental conditions in weight, thickness, and preparation.15

16
Juneja (1997) inoculated 100-gram (3.5 ounce) hamburgers (27% fat content) with17
approximately 6.6 log10 E. coli O157:H7 and cooked in an electric skillet at 275° F (135°18
C) until specified internal temperatures ranging from 130 to 160° F (54 to 71° C) were19
reached. The expected number of surviving organisms thus is a function of only the20
temperature. The standard deviation, which includes random deviations from the model21
and hamburger to hamburger variation and was derived through an analysis of variance22
(AOV), was 0.395 (Marks 1998). In the simulations a normal distribution with standard23
deviation equal to this value could be used to reflect population variation. The covariance24
matrix of the coefficients were determined and could be used in the simulations to reflect25
uncertainty in the estimates (Marks 1998). Figure 3 depicts the expected value and 95%26
confidence intervals for log10 lethality as a function of internal cooking temperature based27
on data of Juneja (1997). Three reference points are highlighted in the figure: 160° F (71°28
C), which corresponds to the current recommendation by USDA for thorough cooking of29
hamburger, and 150° F and 135° F (68 and 60° C) which represent undercooking. The30
log10 lethalities decline linearly with temperature from an expected value of 5.2 log1031
lethality at 160° F to an expected value of only 2.2 log10 lethality at 135° F. The32
significance of log10 lethality can be illustrated for a hamburger containing 100 E. coli33
cells. Cooking to 160° F suggests that the probability that one pathogen cell survives is34
much less than <1% (2x10-4 or 100/105.2 ), whereas cooking to 135° F might permit 45%35
survival (100/102.2 ). This relationship will be useful in modeling decline specifically for36
hamburgers prepared and cooked under the conditions of Juneja (1997).37

38
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Fig. 3: Decline of E. coli O157:H7 in Quarter-Pound Hamburgers with Cooking.1

G. Ingested Number of Organisms2
3

The actual number of ingested organisms would differ from the expected number of4
organisms for a given initial number of organisms, where the previous discussion5
concerned predicting the expected number of organisms as a function of time (Marks6
1998). To account for the variability in the number of organisms, the number of7
organisms at time t was assumed to follow a simple stochastic birth or death process8
(Bharucha-Reid 1960). The simple or linear birth process assumes that the probability of9
increase at a given time is proportional to the number of organisms, where the10
proportionality constant, µ, is independent of the time and the number of organisms. The11
value of µ can be thought of as the probability that a single organism will become two12
organisms. Independent growth between organisms was assumed. Thus, in a small13
interval of time, the change in the probability of n organisms can be described by14
Equation 4. From these equations and subsequent work (Marks, in preparation), the15
distribution of the random variable N(t) can be determined to be the negative binomial16
(Marks 1998). Thus the probability that N(t) =n is expressed in Equation 5 and the17
variance in Equation 6. Note that the variance of N(t) depends on time only through the18
expected value. For simplicity, the expected relative growth computed from the19
Gompertz equation, (Equation 1) can be set equal to exp(µ), and a value of N1(t1) was20
generated using the negative binomial distribution (Marks 1998).21

22
For decline of organisms when cooking to an internal temperature T, using a similar23
derivation, the resulting distribution of the number of surviving organisms is binomial24
with two parameters: 1) the number of organisms immediately before cooking and 2) the25
probability of a single organism surviving. The expected number of surviving organisms26
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may be very small. Generating exposures of zero organisms can be problematic. A1
conditional binomial or Poisson distribution (given that the number of organisms after2
cooking is positive) can be used to address this difficulty and increase the efficiency of3
the Monte Carlo simulations (Marks 1998).4

5
Finally, after cooking, the number of organisms consumed can be generated using a6
negative binomial distribution (Marks 1998). The approach presented here can be7
extended to the most general situation describing birth and death together, and dropping8
the assumption of the lack of time dependence of the probabilities of birth or death within9
an increment of time (Bharucha-Reid 1960).10
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var(N(t))�N0�(t)(�(t)�1))

(1)

(2)

(3)

(4)

(5)

(6)

Table A.4:  Predictive Microbiology Equations (Marks, 1998)

{L(t) = the common log of the expected number of organisms at time t; A = an asymptotic
minimum value for t=-�; C= asymptotic difference between times t=� and t=-�; B = constant; M
= time for which the relative growth rate, dL(t)/d(t), is maximal}

{g = generation time; l = lag time; log (N ) = common logarithm of the initial number of10 0

organisms (t=0)}

{g = generation time; l = lag time; MPD = maximum population density, theoretically equal to 
constant A+C; T = temperature; parameter estimates from SUR: a = , b = -6.31, c = 9.98, 
d = -2.69, e =10.08 and f =-0.014}

{change in the probability of n organisms, dP (t); n= 2,3, ; initial boundary condition P (0) = N }n        1   0

{probability that N(t) =n; C(N ,n) is a function of N  and n; variance var defined below}0      0
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